Radyasyon Nedir?

Radyasyon ortamda taşınan enerji olarak tanımlanabilir. Bu enerji, parçacıklar ve elektromanyetik dalgalar (‘foton’ denilen kütlesi bulunmayan enerji paketçikleri) aracılığıyla taşınır. Bir atoma enerji aktarılarak atomdan elektron koparılmasına iyonlaşma denir. Eğer taşınan enerji, atomlarda iyonlaşmaya sebep oluyor ise ‘iyonlaştırıcı radyasyon’ adını alır.

Alfa parçacığı, beta parçacığı ve nötron parçacık radyasyonuna, gama ışını ve x-ışınları ise elektromanyetik radyasyona örnektir ve hepsi iyonlaştırıcı radyasyondur.

Eğer radyasyon (taşınan enerji) atomlarda iyonlaşmaya sebep olmuyorsa iyonlaştırıcı olmayan radyasyon olarak adlandırılır. Bu radyasyon ile taşınan enerji, atomdan elektron koparmak için yeterli olmadığı için iyonlaşmaya sebep olmaz. İyonlaştırıcı olmayan tüm radyasyon çeşitleri elektromanyetik radyasyondur. İletişimde kullanılan radyo dalgaları, mikrodalgalar ve görünür ışık iyonlaştırıcı olmayan(elektromanyetik) radyasyona örnektir.

Radyoaktivite, fazla enerjiye sahip atom çekirdeklerinin fazla enerjilerini radyasyon yayımlayarak bırakması olayına denir. Bu olaya aynı zamanda radyoaktif bozunma da denir. Radyoaktif bir çekirdeğin bozunma olayı olasılıklara bağlı bir süreçtir ve belirli bir zaman süresinde bozunma olasılığı hesaplanabilir ancak kesin olarak ne zaman bozunma olacağı belirlenemez. Radyoaktif atomların birim zamanda yaydıkları radyasyon aktivite olarak adlandırılır.

Bir radyoaktif maddenin başlangıçtaki aktivitesinin ya da diğer bir deyişle atom sayısının yarıya inmesi için geçen süreye yarı-ömür denir. Yarı-ömür, aktivitenin azalması ile ilgili bir parametre olduğu için çok önemlidir.

İyonlaştırıcı Radyasyon Çeşitleri

İyonlaştırıcı radyasyon alfa radyasyonu, beta radyasyonu, gama radyasyonu, nötron radyasyonu ve x-ışını radyasyonu olarak gruplandırılır.

Alfa radyasyonu, 2 proton ve 2 nötrondan oluşan bir Helyum atomu çekirdeğidir. Kütlesi diğer radyasyon çeşitlerine göre daha fazladır ve protonlardan dolayı +2 elektrik yüküne sahiptir. Alfa bozunması, atom numarası büyük olan atom çekirdeklerinde görünür ve alfa bozunması yapan radyoaktif çekirdeğin proton ve nötron sayısı iki azalır. Alfa radyasyonu ağır ve +2 yük değerine sahip olduğu için girdiği ortam içinde Coulomb etkileşmeleri gerçekleştirerek iyonlaşmaya sebep olur ve enerjisini çok çabuk kaybeder. Bu yüzden alfa radyasyonunun etkileştiği ortam içinde nüfuz etme gücü çok zayıftır. Bir kağıt parçası ya da insan cildi alfa radyasyonunu durdurmak için yeterlidir.

Beta radyasyonu, genelde eksi (ya da nadiren artı) yüke sahip elektrondur. Aslında, elektron denince öncelikle eksi yüklü parçacık (ki buna ‘negatron’ da denir) anlaşılır; artı yüklü olan ise ‘pozitron’ diye anılır. Pozitron radyasyonu artı bir (+1) yüküne, elektron radyasyonu eksi bir (-1) yüküne sahiptir. Dolayısıyla beta radyasyonu ortam içinde Coulomb etkileşmesi yaparak iyonlaşmaya sebep olur ve enerjisini kaybeder. Beta radyasyonunun kütlesi ve yükü alfa parçacığından daha az olduğu için etkileştiği ortam içinde nüfuz etme gücü alfa parçacığından daha fazladır. Beta parçacıkları, beta kaynağı vücut dışında ise, insan cildini geçebilir ancak önemli organlara ulaşamaz. İnce bir alüminyum plaka beta parçacıklarını durdurmak için yeterlidir.

Nötron radyasyonu (veya parçacığı) çekirdekteki nükleer tepkimeler sonucunda yayımlanır. Nötron radyasyonu bir yüke sahip olmadığı için bulunduğu ortam içinde Coulomb etkileşmesi yapmaz. Nötron radyasyonu ancak bir atom çekirdeği ile etkileştiğinde(çarpıştığında) enerjisini kaybeder. Bu sebeple nüfuz etme gücü çok yüksektir. Nötron radyasyonunu azaltmak için su gibi nötron ile etkileşme özelliği yüksek malzemeler kullanılmalıdır.                                                                             

Gama radyasyonu, radyoaktif çekirdek tarafından yayımlanan elektromanyetik radyasyondur. Alfa ya da beta bozunması yapan radyoaktif çekirdeğin enerji seviyesi bozunmadan sonra hala yüksek ise, çekirdek kararlı olabilmek için gama radyasyonu yayımlayarak enerjisini azaltır. Gama bozunması yapan çekirdeğin proton ve nötron sayısında bir değişme olmaz. Gama radyasyonu, etkileştiği ortam içinde üç temel etkileşme yaparak enerjisini bırakır. Bu etkileşmeler Compton saçılması, çift oluşumu ve fotoelektrik olay olarak adlandırılır. Gama radyasyonu yüksek enerji değerine sahip olduğu için nüfuz etme gücü çok yüksektir. Gama radyasyonunu azaltmak için kurşun plaka(levha) kullanılabilir.

X-ışınları, elektromanyetik radyasyondur ve bir atomun elektron enerji seviyelerinde bir düzensizlik olduğunda yayımlanırlar. Bu düzensizliğe örnek olarak, çekirdeğe yakın enerji seviyelerinden elektron kopartılması ya da çekirdeğin yakınındaki enerji seviyesinden bir elektron yakalaması verilebilir. Bu olaylar nedeniyle elektron bulutunun enerji düzeylerinde oluşan boşluklar diğer enerji düzeylerindeki elektronlar tarafından doldurulur ve bu işlem sonrasında x-ışınları ortaya çıkar. X-ışınları Compton saçılması ve fotoelektrik olay gibi etkileşmeler yaparak enerjisini bırakır.